개요
소켓에서 사용되는 데이터들은 이 소켓 버퍼에 저장되며 리눅스에서 제공되는 프로토콜 스택의 처리를 받고 네트워크 디바이스 드라이버에 도달하게 된다.
본 문서에서는 sk_buff 구조체의 함수들을 정리한다.
send me email if you have any questions.
sk_buff
sk_buff는 /linux/skbuff.h 파일에 정의되어 있다.
skbuff.h
struct sk_buff {...}
struct sk_buff {
union {
struct {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
union {
struct net_device *dev;
/* Some protocols might use this space to store information,
* while device pointer would be NULL.
* UDP receive path is one user.
*/
unsigned long dev_scratch;
};
};
struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
struct list_head list;
};
union {
struct sock *sk;
int ip_defrag_offset;
};
union {
ktime_t tstamp;
u64 skb_mstamp_ns; /* earliest departure time */
};
/*
* This is the control buffer. It is free to use for every
* layer. Please put your private variables there. If you
* want to keep them across layers you have to do a skb_clone()
* first. This is owned by whoever has the skb queued ATM.
*/
char cb[48] __aligned(8);
union {
struct {
unsigned long _skb_refdst;
void (*destructor)(struct sk_buff *skb);
};
struct list_head tcp_tsorted_anchor;
};
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
unsigned long _nfct;
#endif
unsigned int len,
data_len;
__u16 mac_len,
hdr_len;
/* Following fields are _not_ copied in __copy_skb_header()
* Note that queue_mapping is here mostly to fill a hole.
*/
__u16 queue_mapping;
/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK (1 << 7)
#else
#define CLONED_MASK 1
#endif
#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
/* private: */
__u8 __cloned_offset[0];
/* public: */
__u8 cloned:1,
nohdr:1,
fclone:2,
peeked:1,
head_frag:1,
pfmemalloc:1;
#ifdef CONFIG_SKB_EXTENSIONS
__u8 active_extensions;
#endif
/* fields enclosed in headers_start/headers_end are copied
* using a single memcpy() in __copy_skb_header()
*/
/* private: */
__u32 headers_start[0];
/* public: */
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX (7 << 5)
#else
#define PKT_TYPE_MAX 7
#endif
#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
/* private: */
__u8 __pkt_type_offset[0];
/* public: */
__u8 pkt_type:3;
__u8 ignore_df:1;
__u8 nf_trace:1;
__u8 ip_summed:2;
__u8 ooo_okay:1;
__u8 l4_hash:1;
__u8 sw_hash:1;
__u8 wifi_acked_valid:1;
__u8 wifi_acked:1;
__u8 no_fcs:1;
/* Indicates the inner headers are valid in the skbuff. */
__u8 encapsulation:1;
__u8 encap_hdr_csum:1;
__u8 csum_valid:1;
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_VLAN_PRESENT_BIT 7
#else
#define PKT_VLAN_PRESENT_BIT 0
#endif
#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
/* private: */
__u8 __pkt_vlan_present_offset[0];
/* public: */
__u8 vlan_present:1;
__u8 csum_complete_sw:1;
__u8 csum_level:2;
__u8 csum_not_inet:1;
__u8 dst_pending_confirm:1;
#ifdef CONFIG_IPV6_NDISC_NODETYPE
__u8 ndisc_nodetype:2;
#endif
__u8 ipvs_property:1;
__u8 inner_protocol_type:1;
__u8 remcsum_offload:1;
#ifdef CONFIG_NET_SWITCHDEV
__u8 offload_fwd_mark:1;
__u8 offload_l3_fwd_mark:1;
#endif
#ifdef CONFIG_NET_CLS_ACT
__u8 tc_skip_classify:1;
__u8 tc_at_ingress:1;
#endif
#ifdef CONFIG_NET_REDIRECT
__u8 redirected:1;
__u8 from_ingress:1;
#endif
#ifdef CONFIG_TLS_DEVICE
__u8 decrypted:1;
#endif
#ifdef CONFIG_NET_SCHED
__u16 tc_index; /* traffic control index */
#endif
union {
__wsum csum;
struct {
__u16 csum_start;
__u16 csum_offset;
};
};
__u32 priority;
int skb_iif;
__u32 hash;
__be16 vlan_proto;
__u16 vlan_tci;
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
union {
unsigned int napi_id;
unsigned int sender_cpu;
};
#endif
#ifdef CONFIG_NETWORK_SECMARK
__u32 secmark;
#endif
union {
__u32 mark;
__u32 reserved_tailroom;
};
union {
__be16 inner_protocol;
__u8 inner_ipproto;
};
__u16 inner_transport_header;
__u16 inner_network_header;
__u16 inner_mac_header;
__be16 protocol;
__u16 transport_header;
__u16 network_header;
__u16 mac_header;
#ifdef CONFIG_KCOV
u64 kcov_handle;
#endif
/* private: */
__u32 headers_end[0];
/* public: */
/* These elements must be at the end, see alloc_skb() for details. */
sk_buff_data_t tail;
sk_buff_data_t end;
unsigned char *head,
*data;
unsigned int truesize;
refcount_t users;
#ifdef CONFIG_SKB_EXTENSIONS
/* only useable after checking ->active_extensions != 0 */
struct skb_ext *extensions;
#endif
};
함수 | 내용 |
---|---|
struct sk_buff *alloc_skb(unsigned int len, int priority) | 소켓 버퍼를 할당 |
struct sk_buff *dev_alloc_skb(unsigned int len) | 소켓 버퍼를 할당하며 priority를 GFP_ATOMIC으로 설정하고, head와 tail 사이에 16바이트를 남겨둠 |
void kfree_skb(struct sk_buff *skb, int rw) | 소켓 버퍼를 해지 |
void dev_kfree_skb(struct sk_buff *skb, int rw) | 디바이스 드라이버에서 소켓 버퍼를 해지 |
unsigned char *skb_put(struct sk_buff *skb, int len) | 버퍼의 끝에 데이터를 넣고 tail과 len field를 변경 |
int skb_tailroom(struct sk_buff *skb) | 소켓 버퍼에 남은 데이터를 위한 영역 크기를 리턴 |
int skb_headroom(struct sk_buff *skb) | 데이터 앞에 남은 부분의 사용가능한 영역 크기 리턴 |
int skb_reserve(struct sk_buff *skb, int len) | 소켓 버퍼에 데이터를 쓰기 전에 headroom에 공간을 마련함 |
unsigned char *skb_pull(struct sk_buff *skb, int len) | 패킷의 head로부터 데이터를 분리함 |
참고
PREVIOUSnet_device 구조체 필드 정리